Simulation analysis of high-order high-duty-cycle surface gratings

Author:

Tian Kun1,Zou Yonggang1,Shi Linlin1,Zhang He1,Xu Yingtian1,Fan Jie1,Tang Hui1,Ma Xiaohui1

Affiliation:

1. Changchun University of Science and Technology

Abstract

High-order surface grating distributed feedback lasers are known to operate with a fundamental mode, narrow linewidth, high power, and high slope efficiency. The adoption of high-order surface gratings can avoid epitaxial re-growth necessary for the fabrication of conventional buried gratings, which simplifies the fabrication process and reduces device cost. It is essential for the design and optimization of device structure to clarify the influence of the change of grating structure parameters on grating characteristics (coupling and loss). Based on Lumerical’s Mode Solutions and multiple grating samples, we evaluated the coupling and loss coefficients of surface gratings as a function of duty cycle, order, and V-groove topography. As the order increases, the duty cycle corresponding to the peak value of the grating coupling coefficient increases gradually and approaches one. The grating coupling coefficient decreases with increasing order but increases at some specific orders. At high duty cycles, the width of the grating groove corresponding to the peak of the coupling coefficient remains substantially in the range of 100–150 nm, which is close to the length of a quarter-wavelength in the grating groove filling material. Regarding the grating groove morphology, the fabrication difficulty of the V-shaped groove grating is obviously less than that of the rectangular groove grating, but its coupling coefficient is slightly smaller than that of the rectangular shaped groove grating of the same depth. The larger the V-shaped groove width, the smaller the peak coupling coefficient and the corresponding sidewall inclination will be. Losses decrease with increasing duty cycle and decreasing sidewall inclination of the V-groove.

Funder

Department of Science and Technology of Jilin Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3