Affiliation:
1. ShanghaiTech University
2. Shanghai Engineering Research Center of Energy Efficient and Custom AI IC
Abstract
Complex amplitude modulation metasurfaces (CAMM) that can independently control both amplitude and phase have fostered a broad research interest worldwide due to its more robust wave manipulation capability than metasurfaces that can only adjust phase. Although many CAMM structures have been reported, they still suffer from limitations such as low transmittance, complicated structure, polarization dependence, high cost, and difficulty in fabrication. This work proposes a high-transmission polarization-independent CAMM operating in an ultra-wide millimeter-wave frequency range from 30 to 50 GHz realized by cost-effective and easily implementable manners. Three CAMMs are designed to generate complicated millimeter-wave beams like holographic imaging beam, Airy beam, and vortex knot beam. The presented simulation and experimental results clearly demonstrate the effectiveness of the CAMMs. This work presents a new paradigm for CAMM that can be readily extended to other frequency bands. It may also advance further applications of millimeter-wave beams in communication, imaging and detection.
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献