Affiliation:
1. Hunan University Of Technology and Business
Abstract
The rapid development of laser technologies promises a significant growth of peak laser intensity from 1022 W/cm2 to >1023 W/cm2, allowing the experimental studies of strong field quantum-electrodynamics physics and laser nuclear physics. Here, we propose a method to realize the ultra-intense laser field amplification of petawatt-class laser pulse in moderate density plasma via relativistic self-focusing and tapered-channel focusing. Three-dimensional particle-in-cell simulations demonstrate that almost an order of magnitude enhancement of laser intensity is possible even though the γ-ray radiation results in massive laser energy loss. In particular, with a seed laser intensity of ∼1023 W/cm2, duration of 82.5 fs and power of 31 petawatt, one can obtain ∼1024 W/cm2 intensity and up to ∼60% energy conversion efficiency from the initial seed laser to the focused laser in plasma with density of 3.3 × 1022/cm3. This may pave the way to the new research field of ultra-intense laser plasma interaction in the upcoming laser facilities.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Science and Technology Program of Hunan Province
Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics
National University of Defense Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献