Unconventional photon blockade in a non-Hermitian indirectly coupled resonator system

Author:

Wang Kai1,Wang Heng1,Gao Yong-Pan1ORCID,Yang Daquan1ORCID,Jiao Rong-Zhen1ORCID,Wang ChuanORCID

Affiliation:

1. Beijing University of Posts and Telecommunications

Abstract

Photon blockade provides an effective way to realize the single-photon source, which attracts intensive attention in the fields of quantum optics and quantum information. Here in this study, we investigate photon blockade in a non-Hermitian indirectly coupled resonator system, which consists of a dissipative cavity and a Kerr nonlinear resonator coupled to two nano-scatters. We find that by tuning the coupling phase θ between the two resonators, the quantum interference could be induced on one side near the exceptional points (EPs), resulting in the unconventional photon blockade effect. Furthermore, it is noticed that the large Kerr nonlinearity is not always beneficial for unconventional photon blockades. There is an optimal threshold for the intensity of the Kerr nonlinearity and the phase angle θ for the appearance of the unconventional photon blockade effect. We believe the current study has substantial consequences for investigating the physical characteristics close to EPs and presents a novel method for developing integrated on-chip single-photon sources.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3