Atom Mediated Single‐Photon Nonlinearity in a Quadratically Coupled Optomechanical System

Author:

Liu Q. H.1,Wang G. C.1,Luan T. Z.1,Shen H. Z.1ORCID

Affiliation:

1. Center for Quantum Sciences and School of Physics Northeast Normal University Changchun 130024 China

Abstract

AbstractIn this paper, conventional phonon blockade (CPNB) and conventional photon blockade (CPTB) effects, as well as unconventional phonon blockade (UPB) effects, are studied in an optomechanical system with nonlinear interaction between the cavity frequency and the square of the mechanical displacement driven by an external field, where a two‐level atom couples with the mechanical mode and a microwave driving field pumps cavity mode. The second‐order correlation function is analytically calculated, which is in good agreement with the numerical simulation given by the master equation. With energy‐level diagram, the atom‐mechanical mode coupling is found to induces the degeneracy splitting of the states and give the optimal conditions for CPNB and CPTB in this system. With the origin of UPB, the optimal conditions are derived and it is found that the realization of UPB is determined by the two couplings of the cavity and atom with respect to the mechanical mode. Moreover, some discussions on the experimental implementation in this quadratically coupled optomechanical system are presented. This study provides a possible way for realizing single‐photon nonlinearity and can extend the applications of optomechanical systems in the field of quantum optics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3