Affiliation:
1. China Xi’an Satellite Control Center
2. Jilin University
Abstract
In this study, a triple-layered optical interconnecting integrated waveguide chip was designed and fabricated using an epoxy cross-linking polymer photonic platform. Fluorinated photopolymers FSU-8 and AF-Z-PC EP were self-synthesized as waveguide cores and cladding materials, respectively. The triple-layered optical interconnecting waveguide device comprised 4 × 4 arrayed waveguide grating (AWG) -based wavelength-selective switching (WSS) arrays, 4 × 4 multi-mode interference (MMI) -cascaded channel-selective switching (CSS) arrays, and 3 × 3 direct-coupling (DC) interlayered switching arrays. The overall optical polymer waveguide module was fabricated by direct UV writing. For the multilayered WSS arrays, the wavelength-shifting sensitivity was ∼0.48 nm/°C. For the multilayered CSS arrays, the average switching time was ∼280 µs, and the maximum power consumption was <30 mW. For interlayered switching arrays, the extinction ratio approximated 15.2 dB. The transmission loss for the triple-layered optical waveguide chip was measured as 10.0–12.1 dB. The flexible multilayered photonic integrated circuits (PIC) can be used in high-density integrated optical interconnecting systems with a large-volume optical information transmission capacity.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献