Comparison study of the femtosecond laser-induced surface structures on silicon at an elevated temperature

Author:

Yang Mochou,Li BingYi,Deng GuoliangORCID

Abstract

The temperature dependency of femtosecond laser induced surface structures opens up a new scenario for studying ultrafast laser-mater interaction on the surface and a novel method for controlling the features of these structures. The shape and crystallinity of micro/nano surface structures created by femtosecond laser irradiation of n-type silicon (100) at elevated temperatures were compared in this study. Low spatial frequency laser induced periodic ripples structures (LSFL), micrometer-sized grooves, and spikes occur at room temperature as the number of pulses increases. At 400 °C, however, the grooves parallel to the polarization are the dominant structures, notwithstanding the presence of LSFL. As the temperature rises, the periodicities of LSFL increase, which we believe is due to a reduction in the oscillation of the surface plasmon polaritons due to the increased damping rate at higher temperatures. Furthermore, Raman spectra reveal that surface structures generated at 400 °C have higher crystallinity than those formed at 25 °C. Our simulations show that the better crystallinity at high temperatures is due to a slower resolidification velocity which is caused by a smaller temperature gradient and higher energy absorption. Our findings demonstrate that the features of femtosecond laser induced surface structures, such as periodicity and crystallinity, can be controlled by adjusting the substrate temperature simultaneously, paving the way for high crystallinity surface micro/nano-structures.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3