Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning

Author:

Cai Rui,Xiao Yao,Sui Xiaolin1,Li Yongyi,Wu Ziyan1,Wu Jie,Deng GuoliangORCID,Zhou Hao,Zhou Shouhuan

Affiliation:

1. Science and Technology on Solid-State Laser Laboratory

Abstract

Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30–50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.

Funder

National Natural Science Foundation of China

Science and Technology on Solid-State Laser Laboratory funding

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3