Multiresolution spectrally-encoded terahertz reflection imaging through a highly diffusive cloak

Author:

Khani Mahmoud E.ORCID,Harris Zachery B.ORCID,Liu Mengkun1,Arbab M. HassanORCID

Affiliation:

1. Stony Brook University

Abstract

Turbid media, made of wavelength-scale inhomogeneous particles, can give rise to many significant imaging and spectroscopy challenges. The random variation of the refractive index within such media distorts the spherical wavefronts, resulting in smeared and speckly images. The scattering-induced artifacts can obscure the characteristic spectral fingerprints of the chemicals in a sample. This in turn prevents accurate chemical imaging and characterization of the materials cloaked with a diffusive medium. In this work, we present a novel computational technique for creating spatially- and spectrally-resolved chemical maps through a diffusive cloak using terahertz time-domain spectroscopy. We use the maximal overlap discrete wavelet transform to obtain a multiresolution spectral decomposition of THz extinction coefficients. We define a new spectroscopic concept dubbed the “bimodality coefficient spectrum” using the skewness and kurtosis of the spectral images. We demonstrate that broadband wavelet-based reconstruction of the bimodality coefficient spectrum can resolve the signature resonant frequencies through the scattering layers. Additionally, we show that our approach can achieve spectral images with diffraction-limited resolution. This technique can be used for stand-off characterization of materials and spectral imaging in nondestructive testing and biological applications.

Funder

Stony Brook University

National Institute of General Medical Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3