Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering

Author:

Xu KuangyiORCID,Arbab M. HassanORCID

Abstract

Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples is not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.

Funder

Stony Brook University

National Institute of General Medical Sciences

U.S. Army Medical Research Acquisition Activity

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3