Modulation of graphene THz absorption based on HAuCl4 doping method

Author:

Li Qiannan1,Bi Kaixi,Niu Yaokai1,Zhou Siyuan,Tan Ligang2,Mu Jiliang,Han Shuqi,Zhang Shuai1,Geng Wenping,Mei Linyu1,Chou Xiujian

Affiliation:

1. North University of China

2. Sichuan Jiuzhou Electric Group Co., Ltd.

Abstract

Graphene is an attractive material for terahertz (THz) absorbers because of its tunable Fermi-Level (EF). It has become a research hotspot to modulate the EF of graphene and THz absorption of graphene. Here, a sandwich-structured single layer graphene (SLG)/ Polyimide (PI)/Au THz absorber was proposed, and top-layer graphene was doped by HAuCl4 solutions. The EF of graphene was shifted by HAuCl4 doping, which was characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Raman tests. The results showed that the EF is shifted about 0.42 eV under 100 mM HAuCl4 doping, the sheet resistance is reduced from 1065 Ω/sq (undoped) to 375 Ω/sq (100 mM). The corresponding absorbance was increased from 40% to 80% at 0.65 THz and increased from 50% to 90% at 2.0 THz under 100 mM HAuCl4 doping. Detailed studies showed that the absorption came from a sandwich structure that meets the impedance matching requirements and provided a thin resonant cavity to capture the incident THz waves. In addition, not only the absorber can be prepared simply, but its results in experiments and simulations agree as well. The proposed device can be applied to electromagnetic shielding and imaging, and the proposed method can be applied to prepare other graphene-based devices.

Funder

Key Research and Development Project Key Program of Shanxi Province, China

Natural Science Foundation of Shanxi Province

Research Project Supported by ShanXi Scholarship Council of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3