DSCNet: lightweight and efficient self-supervised network via depthwise separable cross convolution blocks for speckle image matching

Author:

Li LinORCID,Wang Peng1,Wang Lingrui,Sun Changku,Fu Luhua1

Affiliation:

1. Science and Technology on Electro-Optic Control Laboratory

Abstract

Speckle structured light has become a research hotspot due to its ability to acquire target three-dimensional information with single image projection in recent years. To address the challenges of a low number of extracted speckle feature points, high mismatch rate and poor real-time performance in traditional algorithms, as well as the obstacle of requiring expensive annotation data in deep learning-based methods, a lightweight and efficient self-supervised convolutional neural network (CNN) is proposed to achieve high-precision and rapid matching of speckle images. First, to efficiently utilize the speckle projection information, a feature extraction backbone based on the depthwise separable cross convolution blocks is proposed. Second, in the feature detection module, a softargmax detection head is designed to refine the coordinates of speckle feature points to sub-pixel accuracy. In the feature description module, a coarse-to-fine module is presented to further refine matching accuracy. Third, we adopt strategies of transfer learning and self-supervised learning to improve the generalization and feature representation capabilities of the model. Data augmentation and real-time training techniques are used to improve the robustness of the model. The experimental results show that the proposed method achieves a mean matching accuracy of 91.62% for speckle feature points on the pilot’s helmet, with mere 0.95% mismatch rate. The full model runs at 42ms for a speckle image pair on an RTX 3060.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3