Polarization-controlled varifocal metalens with a phase change material GSST in mid-infrared

Author:

Tan Jinren1,Zhao Zengyue2,Chen Rongsheng2,Yu Feilong2,Chen Jin2,Wang Jie1,Li Guanhai23ORCID,Xing Huaizhong1,Chen Xiaoshuang23,Lu Wei23

Affiliation:

1. Donghua University

2. University of Chinese Academy of Science

3. University of Chinese Academy of Sciences

Abstract

Detection of aldehyde carbonyl radiation plays an essential role in guaranteeing the safety of fried food. However, the radiation of low-content aldehyde carbonyl is always weak and includes polarized light. Focusing the weak radiation with polarization-sensitive configurations provides an efficient way to improve the signal-to-noise ratio of detection. The advent of dynamic metasurfaces based on phase-change materials (PCMs) have demonstrated superiorities over their traditional counterparts in tunability and miniaturization. In this paper, we propose two reflected varifocal metasurfaces, which combine Ge2Sb2Se4Te1 (GSST) with two materials that have close optical constants with amorphous and crystalline GSST. The first one realizes a four-spot focal system with linearly-polarized incidence based on polarization multiplexing. It adds a new polarization degree of freedom compared with traditional varifocal metasurfaces. Compared with traditional spatial-multiplexing method, our second metasurface enables the independent control of the polarization and phase profiles of circularly-polarized light. Remarkably, it reduces energy loss and crosstalk. We believe the novel scenarios of combing GSST with similar materials provide a new direction for tunable metasurfaces based on PCMs.

Funder

Shanghai Municipal Science and Technology Major Project

Natural Science Foundation of Zhejiang Province

Science and Technology Commission of Shanghai Municipality

Shanghai Rising-Star Program

Strategic Priority Research Program of Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3