Modeling and performance analysis of underwater wireless optical absorption, scattering, and turbulence channels employing Monte Carlo-multiple phase screens

Author:

Wen Hao,Yin HongxiORCID,Ji Xiuyang,Huang An

Abstract

The absorption, scattering, and turbulence effects have a significant impact on the performance of underwater wireless optical communication (UWOC). Therefore, it is crucial to consider seawater’s optical parameters comprehensively when designing UWOC systems. So far, most studies on the UWOC channel have separately modeled the absorption and scattering, and turbulence of seawater, and furthermore, the continuous phase perturbations caused by turbulence are neglected to simplify the model when modeling turbulence channels. Hence, this paper simultaneously considers the absorption, scattering, and turbulence effects of seawater and proposes a UWOC channel modeling method that combines Monte Carlo simulation with multiple phase screen approaches. Subsequently, the impacts of different systems and channel conditions on system performance are explored, and simulation results indicate that as the turbidities and turbulence intensities of the seawater increase, the probability density function of received light signal intensity becomes more dispersed. The turbulence introduces an increase in path loss of approximately 5 dB compared to its absence. Furthermore, the channel impulse response (CIR) is obtained, where the turbulence effects cause a 50% decrease in the CIR peak and the noticeable temporal spread.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3