Modeling and oblique transmission characteristics of an underwater wireless optical communication channel based on ocean depth layering

Author:

Chen Dan1,Zhao Peiyan2,Tang Linhai2,Wang Minyan2

Affiliation:

1. Xi’an Key Laboratory of Wireless Optical Communication and Network Research

2. Xi’an University of Technology

Abstract

Underwater wireless optical communication is widely considered in the field of underwater communication due to its high bandwidth and low latency. In a real transmission link, the temperature and salinity of seawater, chlorophyll concentration, and bubble density vary with ocean depth. Therefore, the depth of the optical transmitter in seawater and the tilt angle of the beam will exhibit different beam transmission characteristics. In this paper, an underwater oblique-range layered channel model considering the combined effects of dynamic turbulence, absorption, and scattering is developed based on real data of seawater at different depths measured by the Global Ocean Observing Buoy Argo and the Woods Hole Oceanographic Institution BCO-DMO. The effects of transmission distance, transmitter tilt angle, and transmitter depth on the oblique-range transmission characteristics of the beam in seawater are discussed. The simulation results show that, at the same transmission distance, the beam centroid displacement increases with an increase in transmitter depth only when the transmitter is located above the interior of the thermocline. When the transmitter is located below the interior of the thermocline, the influence of the transmitter tilt angle on the beam centroid displacement decreases. This indicates that at different depths within the interior of the thermocline, the optical beam transmission characteristics exhibit significant variations.

Funder

Xi’an Science and Technology Bureau Program

Key Research and Development Program of Shaanxi Province of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3