Improvement of a Monte-Carlo-simulation-based turbulence-induced attenuation model for an underwater wireless optical communications channel

Author:

Xu DongLing1,Yue Peng1,Yi Xiang1ORCID,Liu JingYi1

Affiliation:

1. Xidian University

Abstract

The light propagating in an underwater wireless optical communications (UWOC) channel suffers absorption and scattering effects jointly caused by particles and turbulence. By using Monte Carlo simulation (MCS), most of the research involving UWOC channel modeling has sufficiently considered the attenuation caused by particles while ignoring or erroneously considering the absorption and scattering effects induced by turbulence, which will result in an underestimation of attenuation. Motivated by this, we use a MCS method to construct a more complete and more reasonable channel model, which makes up for the deficiencies of previous studies and provides a general analysis framework for the absorption and scattering effects brought by the two factors of particles and turbulence. We further study the path loss, channel impulse response (CIR), and probability density function (PDF) of the light intensity under different communication scenarios. Results show that, compared to the situation involving only particle effects, the addition of consideration of turbulence effects increases the path loss by more than 5 dB, reduces the CIR amplitude to less than one-third, and makes the light intensity PDF become more dispersed. Our research can provide certain theoretical guidance for UWOC system design and performance evaluation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

111 Project

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3