Engineering of the Fano resonance spectral response with non-Hermitian metasurfaces by navigating between exceptional point and bound states in the continuum conditions

Author:

Liang Yaoyao,Bochkova Elena,Burokur Shah NawazORCID,de Lustrac André,Benisty Henri1ORCID,Lupu AnatoleORCID

Affiliation:

1. Université Paris-Saclay

Abstract

We address the engineering of Fano resonances and metasurfaces, by placing it in the general context of open non-Hermitian systems composed of coupled antenna-type resonators. We show that eigenfrequency solutions obtained for a particular case of scattering matrix are general and valid for arbitrary antenna radiative rates, thanks to an appropriate transformation of parametric space by simple linear expansion and rotation. We provide evidence that Parity-Time symmetry phase transition path and bound states in continuum (BIC) path represent the natural axis of universal scattering matrix solutions in this parametric coupling-detuning plane and determine the main characteristics of Fano resonance. Specifically, we demonstrate the control of asymmetry and sharpness of Fano resonance through navigation between BIC and PT-symmetric phase transition exceptional point. In particular, we demonstrate a fully symmetric Fano resonance in a system of two coupled bright and dark mode resonators. This result goes beyond current wisdom on this topic and demonstrates the universality of scattering matrix eigenfrequency solutions highlighted in our study. The validity of our approach is corroborated through comparison with experimental and full 3D numerical simulations results published in the literature making it thus possible to grasp a large body of experimental work carried out in this field. The detrimental impact of absorption losses on the contrast of the Fano resonance, which must be two orders of magnitude lower than the radiative losses, is also evidenced.

Funder

Agence Nationale de la Recherche

Campus France

China Scholarship Council

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3