Electrically Injected Metamaterial Grating DFB Laser Exploiting an Ultra‐High Q Electromagnetic Induced Transparency Resonance for Spectral Selection

Author:

Dubrovina Natalia1,Liang Yaoyao1,Gaimard Quentin1,Brac de la Perrière Vincent1,Merghem Kamel12,Benisty Henri3,de Lustrac André14,Ramdane Abderrahim1,Lupu Anatole1ORCID

Affiliation:

1. Centre de Nanosciences et de Nanotechnologies CNRS Université Paris‐Saclay C2N – 10 Boulevard Thomas Gobert Palaiseau 91120 cedex France

2. Telecom SudParis Institut Polytechnique de Paris Palaiseau 91120 France

3. Laboratoire Charles Fabry Université Paris‐Saclay Institut d'Optique IOGS 2 Avenue A Fresnel Palaiseau 91120 France

4. LEME UPL Univ Paris Nanterre Ville d'Avray F92410 France

Abstract

AbstractThe study shows that, in waveguide (WG) configuration, the coupling of a 2D plasmonic metamaterial grating (MMG) having a conventional Bragg period along the guide but a distinct period along the transverse axis can lead to Electromagnetically‐Induced‐Transparency (EIT) behavior. This epitomizes that metamaterials, as functional photonic building blocks, can lead to low losses in many standard devices if properly designed. The study reported the observation in passive WGs of a marked Fano‐type EIT resonance with record high‐quality factor: Q = 5000 and contrast >20 dB. Unlike any standard metal grating, MMG‐assisted waveguides exhibit strong grating coupling strength and low‐loss properties simultaneously. This concept is further applied to demonstrate single‐frequency‐emission electrically‐injected Distributed Feedback (DFB) lasers in the near‐infrared telecom domain. The key point is that laser emission occurs at the peak of EIT, i.e., the maximum in transmission. It therefore addresses one of the main critical issues of DFB lasers related to the single frequency yield. The laser performances are state‐of‐the‐art (Ith < 20 mA, Pmax > 20 mW at I  =  200 mA, SMSR > 50 dB, optical feedback tolerance >−21 dB compliant with IEEE 802.3 standard). The presented approach, compatible with existing industrial technologies, is promising for real‐life telecom applications.

Funder

Bpifrance

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3