Towards fast sensing along ultralong BOTDA: flatness enhancement by utilizing injection-locked dual-bandwidth probe wave

Author:

Yang Yulian1,Liu Liming1,Deng Qingxue1,Jia Xinhong1ORCID,Wu Han2ORCID,Liang Wenyan1,Jiang Li1,Song Weijie1,Ma Huiliang1,Lin Jiabing1,Xu Shirong1

Affiliation:

1. Sichuan Normal University

2. Sichuan University

Abstract

Brillouin optical time-domain analysis (BOTDA) using distributed Brillouin amplification (DBA) only requires a milliwatt-level pump to achieve a sensing range beyond 100 km, which provides a powerful tool for temperature/strain sensing. However, similar to the majority of other long-range BOTDAs, the state-of-the-art reports require > 1000 times average, severely restricting the sensing speed. The blind area over tens of kilometers caused by the nonuniform Brillouin response and parasitic amplitude modulation (AM) are crucial factors affecting the signal-to-noise ratio (SNR). Here, a comprehensive performance optimization and substantial enhancement for BOTDA sensors was presented by the direct demodulation of an injection-locked dual-bandwidth probe wave. Injection locking (IL) can completely eliminate the impact of AM noise; dual-bandwidth probe enables self-adaptive pulse loss compensation, thereby intensifying the SNR flatness along the ultralong fiber, and direct probe demodulation can overcome nonlocal effects and allows ∼19.7 dB enhancement of probe input power. Therefore, using only 100 times average, ∼148.3 km sensing, and ∼5 m spatial resolution were achieved with < ∼0.8 MHz standard deviation of Brillouin frequency shift (BFS) over a broad range (∼131.7 km). The reduction in averages was more than 10 times that of the reported majority of long-range BOTDAs. Such performances were achieved without using time-consuming or post-processing techniques, such as optical pulse coding and image denoising. Because this approach is compatible with optical chirp chain technique without frequency sweeping, fast acquisition (0.3 s) was also realized, which has the potential for fast sensing at 3.3 Hz along a ∼150 km fiber.

Funder

Sichuan Science and Technology Program

Innovative Training Program for College Student of Sichuan Normal University

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3