Abstract
The nonparaxial interference and diffraction by a planar array of emitters have been recently described in terms of the light energy confinement in Lorentzian wells, which are spatially structured by the geometric potential, activated in turn by the two-point correlation prepared at the array plane. Nevertheless, the use of nonplanar arrays of light emitters is of increasing interest in optical technology. Therefore, we extend the confinement model to include spatially structured Lorentzian wells by geometric potentials associated with nonplanar distributions of points. Such geometric potentials are activated by two-point correlations with 3D supports prepared at the nonplanar array. The theoretical analysis is supported and illustrated by numerical simulations.
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献