Non-locality and geometric potential provide the phenomenology of the double-hole single massive particle and light interference

Author:

Castañeda RománORCID,Bedoya Pablo,Matteucci Giorgio

Abstract

Abstract In spite of its accurate prediction of the experimental outcomes of double-hole single particle interference, quantum mechanics does not provide a phenomenological description of the individual realizations of the experiment. By defining a non-locality function and considering the non-paraxial solution of the time-independent Schrödinger equation by the Green’s theorem, we introduce a geometrical potential which leads to an outstanding result. The geometric potential allows the description of spatially structured Lorentzian wells in the volume between the double-hole mask and the detector. The buildup of the interference patterns results from the confined propagation of single particles through these Lorentzian wells. The phenomenological implications of this description are discussed and illustrated by numerical examples, and its compatibility with quantum mechanical predictions is also shown. A further, non-trivial advantage of this model over the conventional formalism, is that the present quantum probability density can be exactly calculated both in the near and far field conditions.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference30 articles.

1. Interference with electrons—from thought to real experiments;Matteucci,2013

2. On the statistical aspect of electron interference phenomena;Merli;Am. J. Phys.,1976

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3