High-flexibility and high-accuracy phase delay calibration method for MEMS-based fringe projection systems

Author:

Qu Jiasheng,Gao Hongxin,Zhang Ruihao,Cao Yingchao,Zhou Wenbiao1,Xie Huikai1ORCID

Affiliation:

1. BIT Chongqing Institute of Microelectronics and Microsystems

Abstract

Microelectromechanical system (MEMS) mirror based laser beam scanning (LBS) projectors for fringe projection profilometry (FPP) are becoming increasingly popular attributing to their small size and low cost. However, the initial phase of the scanning MEMS mirror employed in an LBS projector may vary over time, resulting in unstable and distorted fringe patterns. The distorted fringe patterns will largely decrease the accuracy of the three-dimensional (3D) topographic reconstruction. In this paper, an efficient phase delay calibration method based on a unique fringe projection sequence and a corresponding image processing algorithm is proposed. The proposed method can compensate the phase uncertainty and variation with no need to add any extra components. One LBS projector has been constructed using a uniaxial electrostatic MEMS mirror that has a mirror size of 2.5 mm × 2.5 mm and a scanning field of view of 60 at its resonance of 1523 Hz. 3D reconstruction experiments are conducted to study how the 3D reconstruction results are affected by the phase delay. The standard deviation of a sphere reconstruction is improved from 2.05 mm to 0.20 mm after the positive phase delay deviation of 5 μ s is compensated using this new calibration method.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3