Simple modulation of Lissajous MEMS laser beam scanning with reconfigurable structured light patterns for 3D imaging

Author:

Xu Bin,Ji Yao,Xu Chenhao,Zhang BoORCID,Liu Kai1ORCID,Li JinhuaORCID

Affiliation:

1. Sichuan University

Abstract

Structured light 3D imaging systems commonly employ panel-based projectors or 1-axis MEMS mirrors with beam expander lens to project multi-frame barcodes or dot clouds, addressing challenges posed by objects with multi-scale feature sizes. However, these methods often result in large system volumes due to the required projection multi-lens modules, high hardware costs, or limited light pattern generation capabilities that hindering measurement precision enhancement. This paper introduces an innovative approach to reconfigurable spatial light pattern projection using a single bi-axial MEMS mirror with Lissajous scanning. In contrast to the pixel-by-pixel pre-defined image patterns encoding of conventional 2D laser beam scanning, the proposed method simply aligns the MEMS bi-axial resonance frequencies with laser pulse modulation, enabling the projection of diverse structured light patterns such as stripes, lines, dot matrices, and random dot clouds, which can adapt to different 3D imaging algorithms demands. It eliminates the need for multi-frame encoding and streamlines data caching, simplifies digital logic hardware. A prototype 3D imaging system was developed to demonstrate the mathematical model for laser modulation and the technical feasibility based on the proposed principle. Beyond its lens-free essence, the system supports focal-free optics and a compact projection form factor, which accommodates to a broad range of projection distances and field-of-views based on object’s location. 3D depth map of polynomial surface and blocks objects are extracted through single-frame pattern projection with a relative high accuracy. The presented modulation theory for diverse structured light pattern generation opens avenues for versatile and compact 3D imaging applications of LiDAR and robotic 3D vision.

Funder

Nuclear Power Institute of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3