Abstract
This paper proposes what we believe to be a novel linearization signal conditioning circuit for a tri-axial micro-grating micro-opto-electro-mechanical systems (MOEMS) accelerometer. The output of a micro-grating accelerometer varies as a sine/cosine function of the acceleration. The proposed circuit utilizes a subdivision interpolation technique to process these nonlinear intensity variations and render a linear digital output across the full range. Such a linearization circuit was achieved through a 90-degree phase-shift circuit, high-precision DC bias-voltage and subdivision interpolation circuits to reduce the influence of phase, magnitude, and offset errors of the sine-cosine signals on the interpolation factor, improving the resolution and accuracy of acceleration detection. Experimental results demonstrated that the micro-grating MOEMS accelerometer achieves a resolution of sub-mg, cross-axis errors of 3.57%, 1.22% and 0.89% for x-, y- and z-aixs, respectively. The bias instabilities and velocity random walks for the vertical and lateral accelerometer are superior to 26 µg and 38.7 µg/√Hz. The tri-axial micro-grating MOEMS accelerometer exhibits significant potential for applications requiring high sensitivity and large operation ranges, including the automotive industry and military equipment.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献