Affiliation:
1. National Institute of Optics
2. University of Florence
3. Department of Neuroscience I
Abstract
Identification of neoplastic and dysplastic brain tissues is of paramount importance for improving the outcomes of neurosurgical procedures. This study explores the combined application of fluorescence, Raman and diffuse reflectance spectroscopies for the detection and classification of brain tumor and cortical dysplasia with a label-free modality. Multivariate analysis was performed to evaluate classification accuracies of these techniques–employed both in individual and multimodal configuration–obtaining high sensitivity and specificity. In particular, the proposed multimodal approach allowed discriminating tumor/dysplastic tissues against control tissue with 91%/86% sensitivity and 100%/100% specificity, respectively, whereas tumor from dysplastic tissues were discriminated with 89% sensitivity and 86% specificity. Hence, multimodal optical spectroscopy allows reliably differentiating these pathologies using a non-invasive, label-free approach that is faster than the gold standard technique and does not require any tissue processing, offering the potential for the clinical translation of the technology.
Funder
Fondazione Cassa di Risparmio di Firenze
Regione Toscana
Horizon 2020 Framework Programme
Ministero dell’Istruzione, dell’Università e della Ricerca
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献