Room-temperature plasmonic mid-infrared photodetector based on PtSi/p-Si low Schottky-barrier junction

Author:

Shiraishi Masahiko1,Noda Daiji2,Ohta Ryo2,Kan Tetsuo1ORCID

Affiliation:

1. The University of Electro-Communications

2. Micromachine Center

Abstract

In this study, a low Schottky-barrier photodetector with a plasmonic assist using a two-dimensional (2D) nanohole array was demonstrated, which receives mid-infrared (MIR) light at room temperature. In the structural design, it was confirmed that the 2D nanohole-array photodetector has high absorbance in the MIR region using rigorous coupled-wave analysis. The result showed that the nanoholes formed in p-type silicon (p-Si), platinum silicide (PtSi), to form Schottky barriers, and gold (Au), for photocurrent extraction, had high absorbance in the MIR region along with the Fabry–Perot resonance mode toward the depth of the nanohole. The 2D nanohole array, with Au/PtSi/p-Si layers, has high absorbance for illuminating MIR light near 3.46 µm from the backside. The current–voltage characteristics indicated a low Schottky barrier of 0.32 eV, confirming the photoresponsive potential in the MIR photodetection. The photocurrent response to the modulation signal was obtained at room temperature. In addition, signal processing through transimpedance and lock-in amplifiers enabled us to obtain characteristics with high linearity for light intensities in milliwatts. Light acquisition for 2.5–3.8-µm-long MIR wavelength became possible, and applications in gas sensing, including vibrational absorption bands of alkane groups, are expected.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3