Two-photon polymerization of silica glass diffractive micro-optics with minimal lateral shrinkage

Author:

Zhu Dexing1ORCID,Zhang Jian2,Xu Qiao2,Li Yaguo1ORCID

Affiliation:

1. Fine Optical Engineering Research Center

2. China Academy of Engineering Physics

Abstract

Three-dimensional printing enables the fabrication of silica glass optics with complex structures. However, shrinkage remains a significant obstacle to high-precision 3D printing of glass optics. Here we 3D-printed Dammann gratings (DGs) with low lateral shrinkage (<4%) using a two-photon polymerization (2PP) technique. The process consists of two steps: patterning two-photon polymerizable glass slurry with a 515 nm femtosecond laser to form desired structures and debinding/sintering the structures into transparent and dense silica glass. The sintered structures exhibited distinct shrinkage rates in the lateral against longitudinal directions. As the aspect ratio of the structures increased, the lateral shrinkage decreased, while the longitudinal shrinkage increased. Specifically, the structure with an aspect ratio of approximately 60 achieved a minimal lateral shrinkage of 1.1%, the corresponding longitudinal shrinkage was 61.7%. The printed DGs with a surface roughness below 20 nm demonstrated good beam-shaping performance. The presented technique opens up possibilities for rapid prototyping of silica diffractive optical elements.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3