Quantum Fourier-transform infrared spectroscopy in the fingerprint region

Author:

Mukai Yu1ORCID,Okamoto Ryo12ORCID,Takeuchi Shigeki1ORCID

Affiliation:

1. Kyoto University

2. Japan Science and Technology Agency

Abstract

Infrared quantum absorption spectroscopy is one of the quantum sensing techniques, by which the infrared optical properties of a sample can be estimated through visible or near infrared photon detection without need for infrared optical source or detector, which has been an obstacle for higher sensitivity and spectrometer miniaturization. However, experimental demonstrations have been limited to wavelengths shorter than 5 µm or in the terahertz region, and have not been realized in the so-called fingerprint region of 1500–500 cm−1 (6.6 to 20 µm), which is commonly used to identify chemical compounds or molecules. Here we report the experimental demonstration of quantum Fourier-transform infrared (QFTIR) spectroscopy in the fingerprint region, by which both absorption and phase spectra (complex spectra) can be obtained from Fourier transformed quantum interferograms obtained with a single pixel visible-light detector. As demonstrations, we obtained the transmittance spectrum of a silicon wafer at around 10 µm (1000 cm−1) and complex transmittance spectrum of a synthetic fluoropolymer sheet, polytetrafluoroethylene, in the wavelength range of 8 to 10.5 µm (1250 to 950 cm−1), where absorption due to stretching modes of C-F bonds is clearly observed. These results open the way for new forms of spectroscopic devices based on quantum technologies.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3