Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing

Author:

Li Hanjie1,Wan Songlin1ORCID,Niu Zhenqi1ORCID,Guo Hao1,Zhang Lanya1,Lu Qing1,Wei Chaoyang1,Shao Jianda1

Affiliation:

1. University of Chinese Academy of Sciences

Abstract

Subaperture polishing is a key technique for fabricating ultra-precision optics. However, the error source complexity in the polishing process creates large fabrication errors with chaotic characteristics that are difficult to predict using physical modelling. In this study, we first proved that the chaotic error is statistically predictable and developed a statistical chaotic-error perception (SCP) model. We confirmed that the coupling between the randomness characteristics of chaotic error (expectation and variance) and the polishing results follows an approximately linear relationship. Accordingly, the convolution fabrication formula based on the Preston equation was improved, and the form error evolution in each polishing cycle for various tools was quantitatively predicted. On this basis, a self-adaptive decision model that considers the chaotic-error influence was developed using the proposed mid- and low-spatial-frequency error criteria, which realises the automatic decision of the tool and processing parameters. An ultra-precision surface with equivalent accuracy can be stably realised via proper tool influence function (TIF) selection and modification, even for low-deterministic level tools. Experimental results indicated that the average prediction error in each convergence cycle was reduced to 6.14%. Without manual participation, the root mean square(RMS) of the surface figure of a ϕ100-mm flat mirror was converged to 1.788 nm with only robotic small-tool polishing, and that of a ϕ300-mm high-gradient ellipsoid mirror was converged to 0.008 λ. Additionally, the polishing efficiency was increased by 30% compared with that of manual polishing. The proposed SCP model offers insights that will help achieve advancement in the subaperture polishing process.

Funder

Shanghai Sailing Program

National Natural Science Youth Foundation of China

Natural Science Foundation of Shanghai

Member of Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3