Affiliation:
1. University of Electronic Science and Technology of China
2. Bangor University
3. Sun Yat-Sen University
Abstract
Chromatic dispersion-enhanced signal-signal beating interference (SSBI) considerably affects the performance of intensity-modulation and direct-detection (IM/DD) fiber transmission systems. For recovering optical fields from received double sideband signals after propagating through IM/DD transmission systems, Gerchberg-Saxton (G-S) iterative algorithms are promising, which, however, suffers slow convergence speeds and local optimization problems. In this paper, we propose a multi-constraint iterative algorithm (MCIA) to extend the Gerchberg-Saxton-based linearized detection. The proposed technique can accelerate the convergence speed and realize nonlinear-equalization-free detection. Based on the data-aided iterative algorithm (DIA) and the decision-directed data-aided iterative algorithm (DD-DIA), the proposed technique reuses redundant bits from channel coding to not only correct decision errors but also enforce the constraints on the task function to further accelerate the whole optical field retrieval processing. Simulation results show that, compared with the DD-DIA, the MCIA reduces the received optical power (ROP) by about 1.5-dB for a 100-Gb/s over 50-km SSMF PAM-4 signal transmission at the symbol error rate (SER) of 2×10−2. For a 100-Gb/s over 400-km SSMF transmission system, just 30 MCIA iterations is needed, which is 30% reduction in iteration count compared with the DD-DIA. For further increased transmission capacities, the MCIA can improve the SER by two orders of magnitude compared with the conventional IA. To validate the effectiveness of the MCIA, we also conduct experiments to transmit 92-Gb/s PAM-4 signals over 50-km IM/DD fibre systems. We find that the MCIA has a 1-dB ROP improvement compared with the DD-DIA. Compared with Volterra nonlinear equalization, the BERs of the MCIA with a simple linear equalizer are reduced by more than one order of magnitude with only 52 MCIA iterations.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Open Fund of IPOC
State Key Laboratory of Advanced Optical Communication Systems and Networks
Fundamental Research Funds for the Central Universities
the program of China Scholarships Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献