Automated segmentation and quantification of calcified drusen in 3D swept source OCT imaging

Author:

Lu JieORCID,Cheng Yuxuan,Li Jianqing1,Liu Ziyu,Shen Mengxi1ORCID,Zhang Qinqin2,Liu Jeremy1ORCID,Herrera Gissel1,Hiya Farhan E.1,Morin Rosalyn1,Joseph Joan1,Gregori Giovanni1,Rosenfeld Philip J.1,Wang Ruikang K.3ORCID

Affiliation:

1. University of Miami Miller School of Medicine

2. Research and Development

3. University of Washington

Abstract

Qualitative and quantitative assessments of calcified drusen are clinically important for determining the risk of disease progression in age-related macular degeneration (AMD). This paper reports the development of an automated algorithm to segment and quantify calcified drusen on swept-source optical coherence tomography (SS-OCT) images. The algorithm leverages the higher scattering property of calcified drusen compared with soft drusen. Calcified drusen have a higher optical attenuation coefficient (OAC), which results in a choroidal hypotransmission defect (hypoTD) below the calcified drusen. We show that it is possible to automatically segment calcified drusen from 3D SS-OCT scans by combining the OAC within drusen and the hypoTDs under drusen. We also propose a correction method for the segmentation of the retina pigment epithelium (RPE) overlying calcified drusen by automatically correcting the RPE by an amount of the OAC peak width along each A-line, leading to more accurate segmentation and quantification of drusen in general, and the calcified drusen in particular. A total of 29 eyes with nonexudative AMD and calcified drusen imaged with SS-OCT using the 6 × 6 mm2 scanning pattern were used in this study to test the performance of the proposed automated method. We demonstrated that the method achieved good agreement with the human expert graders in identifying the area of calcified drusen (Dice similarity coefficient: 68.27 ± 11.09%, correlation coefficient of the area measurements: r = 0.9422, the mean bias of the area measurements = 0.04781 mm2).

Funder

Carl Zeiss Meditec Inc

Salah Foundation

Research to Prevent Blindness

National Eye Institute

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3