Temperature-compensated fiber-optic online monitoring methodology for 3D shape and strain of near-space airship envelope

Author:

Sun Guangkai1,Li Mohan1,Wang Yuanfeng1,Zhou Kangpeng1,Hu Xuewen1,Guo Zhi1,Zhu Lianqing1

Affiliation:

1. Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University

Abstract

Near-space airships are high-end airships that are being vigorously developed in the aerospace industry. It has important application value in the telecommunication, surveillance, monitoring, remote sensing, and exploration fields. The envelope is the key component that provides lift to the airship. Online monitoring of envelope status is critical to ensuring airship performance, safety, and reliability. However, online monitoring of the 3D shape and strain of the airship envelope is still a challenging task. A hybrid multi-core and single-core fiber-optic monitoring method with a temperature self-compensation function is proposed to address this issue. The method uses multi-core fiber optic sensors, 3D curves, and a surface reconstruction algorithm to obtain the 3D shape of the envelope. Temperature decoupling of the sensing signal is carried out via sensors on the central core of the multi-core fibers that are only sensitive to temperature, thereby eliminating the influence of temperature changes on the measurement accuracy. The strain field of the envelope skin is measured by single-core fiber optic sensors and a strain interpolation algorithm. The accuracy of the proposed method is experimentally validated. The results show that the 3D shape measurement error of the envelope skin is 4.82% when the skin is bent in the range of 10 m 1 15.38 m 1 . When the ambient temperature changes in the range of 50 C 150 C , the position measurement error caused by the temperature change is only 1.2% of the effective measurement length (160 mm) of the multi-core fiber optic sensor. When the skin is stretched in the range of 500 5000 µ ε , the measurement error of the average value of the skin strain field is only 0.75%. This proves that the proposed method can simultaneously measure the 3D shape and strain field of the envelope skin and also effectively suppress the influence of ambient temperature changes on the measurement accuracy. The proposed method has application prospects in the online monitoring of airship envelopes.

Funder

Beijing Municipal Natural Science Foundation

Key Project of Beijing Municipal Education Commission Science and Technology Program

Beijing Nova Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3