High quality of an absolute phase reconstruction for coherent digital holography with an enhanced anti-speckle deep neural unwrapping network

Author:

Lu Wei,Shi Yue,Ou Pan1,Zheng Ming,Tai Hanxu,Wang Yuhong,Duan Ruonan,Wang Mingqing2,Wu Jian

Affiliation:

1. Beihang University

2. Peking University Third Hospital

Abstract

It is always a challenge how to overcome speckle noise interference in the phase reconstruction for coherent digital holography (CDH) and its application, as this issue has not been solved well so far. In this paper, we are proposing an enhanced anti-speckle deep neural unwrapping network (E-ASDNUN) approach to achieve high quality of absolute phase reconstruction for CDH. The method designs a special network-based noise filter and embeds it into a deep neural unwrapping network to enhance anti-noise capacity in the image feature recognition and extraction process. The numerical simulation and experimental test on the phase unwrapping reconstruction and the image quality evaluation under the noise circumstances show that the E-ASDNUN approach is very effective against the speckle noise in realizing the high quality of absolute phase reconstruction. Meanwhile, it also demonstrates much better robustness than the typical U-net neural network and the traditional phase unwrapping algorithms in reconstructing high wrapping densities and high noise levels of phase images. The E-ASDNUN approach is also examined and confirmed by measuring the same phase object using a commercial white light interferometry as a reference. The result is perfectly consistent with that obtained by the E-ASDNUN approach.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3