A Method for Detecting the Vacuum Degree of Vacuum Glass Based on Digital Holography

Author:

Li Ting1,Song Qinghe12,He Guangjun1ORCID,Xia Haiting23ORCID,Li Haoxiang1ORCID,Gui Jinbin1,Dang Haining1

Affiliation:

1. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China

3. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

Abstract

The vacuum degree is the key parameter reflecting the quality and performance of vacuum glass. This investigation proposed a novel method, based on digital holography, to detect the vacuum degree of vacuum glass. The detection system was composed of an optical pressure sensor, a Mach–Zehnder interferometer and software. The results showed that the deformation of monocrystalline silicon film in an optical pressure sensor could respond to the attenuation of the vacuum degree of vacuum glass. Using 239 groups of experimental data, pressure differences were shown to have a good linear relationship with the optical pressure sensor’s deformations; pressure differences were linearly fitted to obtain the numerical relationship between pressure difference and deformation and to calculate the vacuum degree of the vacuum glass. Measuring the vacuum degree of vacuum glass under three different conditions proved that the digital holographic detection system could measure the vacuum degree of vacuum glass quickly and accurately. The optical pressure sensor’s deformation measuring range was less than 4.5 μm, the measuring range of the corresponding pressure difference was less than 2600 pa, and the measuring accuracy’s order of magnitude was 10 pa. This method has potential market applications.

Funder

Qinghe Song

Haiting Xia

Jinbin Gui

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3