Transmission properties of grating-gate GaN-based HEMTs under different incident angles in the mid-infrared region

Author:

Cai Ming1ORCID,Liu Hongxia1,Wang Shulong1,Wang Yindi1ORCID,Wang Dong1,Su Mengwei1

Affiliation:

1. Xidian University

Abstract

The absorption tunability of grating-gate GaN-based HEMTs in the mid-infrared region has been confirmed in wide frequency regions. However, the application potential of grating-gate GaN-based HEMTs is limited due to a lack of study on transmission properties under different incident angles. Therefore, this paper studied the transmission characteristics of grating-gate GaN-based HEMTs under different incident angles in the mid-infrared region. By using the optical transfer matrix approach to model the dispersion characteristics in the structure, we found that the stronger plasmon polaritons and phonon polaritons occur in conductive channel and GaN layer. The variation of different incident wave vectors with incident angle affects the plasmon polaritons and phonon polaritons excitation intensities, resulting in the angular tunability transmission properties of grating-gate GaN-based HEMTs. After simulating the electric field distribution in COMSOL, the different transmission properties of grating-gate GaN-based HEMTs occur under different incident angles. Simulated results reveal the excellent angle-selectivity in grating-gate GaN-based HEMTs. The research into these characteristics shows that the structure has a lot of promise for designing mid-infrared angle selection filters, sensors, and other subwavelength devices in the future.

Funder

Research and equipment development of chip dynamic response verification technology based on environmental stress coupling of power distribution terminal

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3