High-performance anti-reflection micro-forests on aluminium alloy fabricated by laser induced competitive vapor deposition

Author:

Chen Qiaodan1,Duan Jun1,Xiong Wei1ORCID,Deng Leimin1

Affiliation:

1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology

Abstract

Surfaces with strong anti-reflection properties have attracted the wide attention of scientists and engineers due to their great application potential in many fields. Traditional laser blackening techniques are limited by the material and surface profile, which are not able to be applied to film and large-scale surfaces. Inspired by the rainforest, a new design for anti-reflection surface structures was proposed by constructing micro-forests. To evaluate this design, we fabricated micro-forests on an Al alloy slab by laser induced competitive vapor deposition. By controlling the deposition of the laser energy, the surface can be fully covered by forest-like micro-nano structures. The porous and hierarchical micro-forests performed a minimum and average reflectance of 1.47% and 2.41%, respectively, in the range of 400-1200 nm. Different from the traditional laser blackening technique, the micro-scaled structures were formed due to the aggregation of the deposited nanoparticles instead of the laser ablation groove. Therefore, this method would lead to little surface damage and can also be applied to the aluminum film with a thickness of 50 µm. The black aluminum film can be used to produce the large-scale anti-reflection shell. Predictably, this design and the LICVD method are simple and efficient, which can broaden the application of the anti-reflection surface in many fields such as visible-light stealth, precision optical sensors, optoelectronic devices, and aerospace radiation heat transfer device.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insight into the surface behavior and dynamic absorptivity of laser removal of multilayer materials;Optics Express;2023-10-23

2. Fabrication of Cu-doping Micro-Nano Grooved Structures on Ti6Al4V Alloy by Laser Direct Writing;2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2023-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3