Insight into the surface behavior and dynamic absorptivity of laser removal of multilayer materials

Author:

Yang GuiyangORCID,Liu Le,Chen Qiaodan,Xiong WeiORCID,Deng LeiminORCID

Abstract

Laser-materials interaction is the fascinating nexus where laser optics, physical/ chemistry, and materials science intersect. Exploring the dynamic interaction process and mechanism of laser pulses with materials is of great significance for analyzing laser processing. Laser micro/nano processing of multilayer materials is not an invariable state, but rather a dynamic reaction with unbalanced and multi-scale, which involves multiple physical states including laser ablation, heat accumulation and conduction, plasma excitation and shielding evolution. Among them, several physical characteristics interact and couple with each other, including the surface micromorphology of the ablated material, laser absorption characteristics, substrate temperature, and plasma shielding effects. In this paper, we propose an in-situ monitoring system for laser scanning processing with coaxial spectral detection, online monitoring and identification of the characteristic spectral signals of multilayer heterogeneous materials during repeated scanning removal by laser-induced breakdown spectroscopy. Additionally, we have developed an equivalent roughness model to quantitatively analyze the influence of surface morphology changes on laser absorptivity. The influence of substrate temperature on material electrical conductivity and laser absorptivity was calculated theoretically. This reveals the physical mechanism of dynamic variations in laser absorptivity caused by changes in plasma characteristics, surface roughness, and substrate temperature, and it provides valuable guidance for understanding the dynamic process and interaction mechanism of laser with multilayer materials.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3