Development and validation of a hybrid constraint spectral thermometry for laminar sooting flames

Author:

Du Wei,Wen Daxin1,Ma Liuhao,Wang Yu2ORCID

Affiliation:

1. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong

2. Hubei Key Laboratory of Advanced Technology for Automotive Components

Abstract

A hybrid constraint spectral thermometry (HCST) method based on combined light extinction and spectral soot emission was developed for temperature measurements in sooting flames. Light extinction measurements were performed in the 635–1064 nm spectral range to constrain the fitting of the soot optical property E ( m ) as a function of the wavelength for separately measured spectral emission data. This hybrid constraint methodology helps to avoid complete reliance on either measurement, which significantly increases the immunity of the temperature determination to measurement noises. After numerically validating the performance of HCST, measurements were performed for a series of representative sooting premixed flames. Additional measurements were conducted with the proven tunable diode laser absorption technique to provide a reference temperature, and satisfactory agreements demonstrate the accuracy and robustness of the proposed HCST method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3