Infrared spectral soot emission for robust and high-fidelity flame thermometry

Author:

Ma LiuhaoORCID,Du Wei,Wen Daxin1,Wang YuORCID

Affiliation:

1. The Chinese University of Hong Kong

Abstract

Spectral soot emission (SSE) in the visible spectrum is a popular technique for non-intrusive thermometry in sooting flames. However, its accuracy is restricted by uncertainties in the wavelength dependence of soot optical properties. We propose a novel infrared spectral soot emission method that successfully addresses this issue. Comprehensive light extinction experiments were firstly conducted to explore the spectral variation of soot optical property. The results indicated a wavelength independence of the soot absorption function provided the wavelength of the incident light is larger than 1000 nm, thereby indicating through the Kirchhoff law the potential of a robust thermometry using infrared (>1000 nm) spectral soot emissions. Proof-of-concept experiments were performed for sooting premixed flames of ethylene with different equivalence ratios. The results demonstrated that the new method provided more accurate temperature results compared with its visible-NIR counterpart, particularly at flame positions where nascent soot particles are present. The proposed method is, to our knowledge, the first infrared spectral soot emission-based thermometry, and is believed to offer a solution to improving the fidelity of SSE with a cost-effective optical setup.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3