Evaluation of the surface topography quality of large-area diamonds by image processing and mathematical modeling

Author:

Zhou YutingORCID,Wang Yasi1,Zeng Pei,Ji Zhiqiang,Wang Qingyu,Fan Fu,Shi Huimin2,Chen Yiqin

Affiliation:

1. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)

2. Northwest Normal University

Abstract

Diamond with ultra-smooth and flat surface plays a crucial role in the various fields of nonlinear optics, NV center, waveguide, and so on, due to its remarkable physical properties. Consequently, the fast and efficient polishing and evaluating of diamond surfaces are indispensable to obtain high-quality smooth and flat diamond surfaces. As one of the most widespread techniques, atomic force microscope (AFM) and optical profilometry (OP) are enslaved to their small measurement regions and high time consuming, especially in the case of high-resolution measurement of large area diamond surfaces. Therefore, a novel approach to evaluate the polished diamond surface with high-efficiency and accuracy is desperately required. In this works, we propose a novel approach, surface topography quality (STQ) mathematical model, to achieve fast and large area evaluation to the polished diamond surface. Specifically, by combining currently popular image processing with mathematical statistics, STQ mathematical model generates a concept called surface topography quality rate (STQR) to quantitatively evaluate the surface quality of diamond. The results from large-area scanning electron microscope images before and after ion beam polishing demonstrates its reliability and preponderant advantage in dealing with large area surface compared to that of the conventional use of atomic force microscope. The mathematical model provides a unique and reliable approach to comprehensively and objectively evaluate diamond surface, which may promote the advancement of high-performance diamond-based devices.

Funder

Institute Development Project

Northwest Normal University young researcher promoting project

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3