A metasurface-based diamond frequency converter using plasmonic nanogap resonators

Author:

Shen Qixin1,Shams-Ansari Amirhassan2,Boyce Andrew M.3,Wilson Nathaniel C.1,Cai Tao3,Loncar Marko2,Mikkelsen Maiken H.3

Affiliation:

1. Department of Physics, Duke University, Durham, NC, 27708, USA

2. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA

3. Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA

Abstract

AbstractDiamond has attracted great interest as an appealing material for various applications ranging from classical to quantum optics. To date, Raman lasers, single photon sources, quantum sensing and quantum communication have been demonstrated with integrated diamond devices. However, studies of the nonlinear optical properties of diamond have been limited, especially at the nanoscale. Here, a metasurface consisting of plasmonic nanogap cavities is used to enhance both χ(2) and χ(3) nonlinear optical processes in a wedge-shaped diamond slab with a thickness down to 12 nm. Multiple nonlinear processes were enhanced simultaneously due to the relaxation of phase-matching conditions in subwavelength plasmonic structures by matching two excitation wavelengths with the fundamental and second-order modes of the nanogap cavities. Specifically, third-harmonic generation (THG) and second-harmonic generation (SHG) are both enhanced 1.6 × 107-fold, while four-wave mixing is enhanced 3.0 × 105-fold compared to diamond without the metasurface. Even though diamond lacks a bulk χ(2) due to centrosymmetry, the observed SHG arises from the surface χ(2) of the diamond slab and is enhanced by the metasurface elements. The efficient, deeply subwavelength diamond frequency converter demonstrated in this work suggests an approach for conversion of color center emission to telecom wavelengths directly in diamond.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference76 articles.

1. Refractory plasmonics without refractory materials;Nano Lett.,2017

2. An integrated diamond Raman laser pumped in the near-visible;Opt. Lett.,2017

3. Diamond nonlinear photonics;Nat. Photonics,2014

4. Control of radiative processes using tunable plasmonic nanopatch antennas;Nano Lett.,2014

5. Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings;Nano Lett.,2010

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3