Metasurface-tunable lasing polarizations in a microcavity

Author:

Yuan Zhiyi,Huang Shih-Hsiu1,Qiao Zhen,Wu Pin Chieh1,Chen Yu-ChengORCID

Affiliation:

1. National Cheng Kung University

Abstract

Manipulating polarization states of microlasers is essentially important in many emerging optical and biological applications. Strategies have been focused on using external optical elements or surface nanostructures to control the polarization state of laser emission. Here we introduce a strategy for manipulation of laser polarization based on metasurfaces through round trips of photons confined inside an active optical cavity. The roles of intracavity metasurfaces and light–meta-atom interactions were investigated under a stimulated emission process in a microcavity. Taking advantage of strong optical feedback produced by the Fabry–P e ´ rot optofluidic microcavity, light–meta-atom interactions are enlarged, resulting in polarized lasing emission with high purity and controllability. Depending on the metasurface structural orientation, the polarization state of lasing emission can be actively modulated as linearly polarized or elliptically polarized with different degrees of circular polarization at a source within the microcavity. This study provides insight into fundamental laser physics, opening possibilities by bridging metasurfaces into microlasers.

Funder

Agency for Science, Technology and Research

National Science and Technology Council (NSTC), Taiwan

Ministry of Education

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3