Affiliation:
1. University of Trieste
2. Istituto di Struttura della Materia-CNR (ISM-CNR)
3. Istituto Officina dei Materiali (CNR-IOM)
4. University of Cologne
Abstract
Understanding how a spin current flows across metal-semiconductor interfaces at pico- and femtosecond time scales is of paramount importance for ultrafast spintronics, data processing, and storage applications. However, the possibility to directly access the propagation of spin currents, within such time scales, has been hampered by the simultaneous lack of both ultrafast element-specific magnetic sensitive probes and tailored well-built and characterized metal-semiconductor interfaces. Here, by means of a novel free-electron laser-based element-sensitive ultrafast time-resolved Kerr spectroscopy, we reveal different magnetodynamics for the Ni
M
2
,
3
and Si
L
2
,
3
absorption edges. These results are assumed to be the experimental evidence of photoinduced spin currents propagating at a speed of
∼
0.2
nm/fs
across the Ni/Si interface.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献