Photonic molecule based on coupled ring quantum cascade lasers

Author:

Kacmoli Sara,Sivco Deborah L.1,Gmachl Claire F.

Affiliation:

1. Trumpf Photonics, Inc.

Abstract

Photonic molecules—particular systems composed of coupled optical resonators—emulate the behavior of complex physical systems exhibiting discrete energy levels. In this work, we present a photonic molecule composed of two strongly coupled, mid-infrared ring quantum cascade lasers. We explore both experimentally and numerically the key features of the photonic molecule such as the energy level splitting of bonding and antibonding supermodes. Due to the large size of the resonators, the energy splitting results in bands containing tens of modes. Each of these modes is furthermore doubly degenerate with respect to the direction of propagation, namely, clockwise and counterclockwise. We explore several methods to carefully break these symmetries of the system in a controlled manner by introducing spatial and temporal asymmetries in the pumping scheme of the ring lasers. By employing these techniques, we achieve a high degree of precision in the dynamic control of the photonic molecule. Owing to their inherent suitability for on-chip integration, this class of devices may enable applications as varied as mid-infrared sensors or a rich playground for studying non-Hermitian photonics and quantum optics with quantum cascade lasers.

Funder

Office of the Dean for Research, Princeton University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3