Quantum cascade disk and ring lasers

Author:

Kacmoli S.1ORCID,Gmachl C. F.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Princeton University , Princeton, New Jersey 08544, USA

Abstract

Quantum cascade lasers (QCLs) are a prominent semiconductor laser source operating in the mid-infrared and terahertz regimes. As is typical with semiconductor lasers, QCLs usually monolithically integrate the active gain material and the resonator. Hence, over nearly 30 years of QCL development, resonator geometries have developed alongside active region designs. Disk and ring geometries, in particular, have long been recognized for their unique attributes, which have, in turn, contributed to the demonstration of ultra-small cavities as well as surface emission from QCLs. In recent years, ring geometries have witnessed a resurgence as promising platforms for frequency comb and soliton generation as well as mid-infrared photonic integration. In this Perspective, we describe the attributes that make ring and disk QCLs unique by discussing key demonstrations. We present recent results, which indicate that these devices are poised to become building blocks of highly integrated, next-generation spectrometers operating in the mid-infrared. We discuss promising avenues for future research centered around monolithic ring and disk-type QCLs in applications ranging from gas sensing and spectroscopy to quantum optics and non-Hermitian photonics.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3