Affiliation:
1. University of Oxford
2. Fudan University
3. University of Pittsburgh
4. University of Exeter
5. University of Muenster
Abstract
Over a century ago, Ivan P. Pavlov, in a classic experiment, demonstrated how dogs can learn to associate a ringing bell with food, thereby causing a ring to result in salivation. Today, it is rare to find the use of Pavlovian type associative learning for artificial intelligence applications even though other learning concepts, in particular, backpropagation on artificial neural networks (ANNs), have flourished. However, training using the backpropagation method on “conventional” ANNs, especially in the form of modern deep neural networks, is computationally and energy intensive. Here, we experimentally demonstrate a form of backpropagation-free learning using a single (or monadic) associative hardware element. We realize this on an integrated photonic platform using phase-change materials combined with on-chip cascaded directional couplers. We then develop a scaled-up circuit network using our monadic Pavlovian photonic hardware that delivers a distinct machine learning framework based on single-element associations and, importantly, using backpropagation-free architectures to address general learning tasks. Our approach reduces the computational burden imposed by learning in conventional neural network approaches, thereby increasing speed while also offering a higher bandwidth inherent to our photonic implementation.
Funder
European Commission
Engineering and Physical Sciences Research Council
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
The Young Scientist Project of MOE Innovation Platform
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献