Monadic Pavlovian associative learning in a backpropagation-free photonic network

Author:

Tan James Y. S.1,Cheng Zengguang12ORCID,Feldmann Johannes1,Li Xuan1,Youngblood Nathan13ORCID,Ali Utku E.1ORCID,Wright C. David4ORCID,Pernice Wolfram H. P.5,Bhaskaran Harish1ORCID

Affiliation:

1. University of Oxford

2. Fudan University

3. University of Pittsburgh

4. University of Exeter

5. University of Muenster

Abstract

Over a century ago, Ivan P. Pavlov, in a classic experiment, demonstrated how dogs can learn to associate a ringing bell with food, thereby causing a ring to result in salivation. Today, it is rare to find the use of Pavlovian type associative learning for artificial intelligence applications even though other learning concepts, in particular, backpropagation on artificial neural networks (ANNs), have flourished. However, training using the backpropagation method on “conventional” ANNs, especially in the form of modern deep neural networks, is computationally and energy intensive. Here, we experimentally demonstrate a form of backpropagation-free learning using a single (or monadic) associative hardware element. We realize this on an integrated photonic platform using phase-change materials combined with on-chip cascaded directional couplers. We then develop a scaled-up circuit network using our monadic Pavlovian photonic hardware that delivers a distinct machine learning framework based on single-element associations and, importantly, using backpropagation-free architectures to address general learning tasks. Our approach reduces the computational burden imposed by learning in conventional neural network approaches, thereby increasing speed while also offering a higher bandwidth inherent to our photonic implementation.

Funder

European Commission

Engineering and Physical Sciences Research Council

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

The Young Scientist Project of MOE Innovation Platform

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3