Resonant and phonon-assisted ultrafast coherent control of a single hBN color center

Author:

Preuss Johann A.1ORCID,Groll Daniel1ORCID,Schmidt Robert1ORCID,Hahn Thilo1,Machnikowski Paweł2ORCID,Bratschitsch Rudolf1ORCID,Kuhn Tilmann1ORCID,Michaelis de Vasconcellos Steffen1ORCID,Wigger Daniel2ORCID

Affiliation:

1. University of Münster

2. Wrocław University of Science and Technology

Abstract

Single-photon emitters in solid-state systems are important building blocks for scalable quantum technologies. Recently, quantum light emitters have been discovered in the wide-gap van der Waals insulator hexagonal boron nitride (hBN). These color centers have attracted considerable attention due to their quantum performance at elevated temperatures and wide range of transition energies. Here, we demonstrate coherent state manipulation of a single hBN color center with ultrafast laser pulses and investigate in our joint experiment–theory study the coupling between the electronic system and phonons. We demonstrate that coherent control can be performed not only resonantly on the optical transition giving access to the decoherence but also phonon-assisted, which reveals the internal phonon quantum dynamics. In the case of optical phonons, we measure their decoherence, stemming in part from their anharmonic decay. Dephasing induced by the creation of acoustic phonons manifests as a rapid decrease in the coherent control signal when traveling phonon wave packets are emitted. Furthermore, we demonstrate that the quantum superposition between a phonon-assisted process and resonant excitation causes ultrafast oscillations of the coherent control signal. Our results pave the way for ultrafast phonon quantum state control on the nanoscale and open up a new promising perspective for hybrid quantum technologies.

Funder

Narodowa Agencja Wymiany Akademickiej

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3