Femtosecond laser micromachining for stress-based figure correction of thin mirrors

Author:

Zuo Heng,Heilmann RalfORCID,Schattenburg MarkORCID

Abstract

The fabrication of a large number of high-resolution thin-shell mirrors for future space telescopes remains challenging, especially for revolutionary mission concepts such as NASA’s Lynx X-ray Surveyor. It is generally harder to fabricate thin mirrors to the exact shape than thicker ones, and the coatings deposited onto mirror surfaces to increase the reflectivity typically have high intrinsic stress that deforms the mirrors further. Since the rapid development of femtosecond laser technologies over the last few decades has triggered wide applications in materials processing, we have developed a mirror figure correction and stress compensation method using a femtosecond laser micromachining technique for stress-based surface shaping of thin-shell x-ray optics. We employ a femtosecond laser to selectively remove regions of a stressed film that is grown onto the back surface of the mirror, to modify the stress states of the mirror. In this paper, we present experimental results to create both isotropic and anisotropic stress states on thin flat silicon mirrors with thermal oxide ( S i O 2 ) films using femtosecond lasers. We show that equibiaxial stress can be generated through uniformly micromachined holes, while non-equibiaxial stress arises from the ablation of equally spaced troughs. We also present results from strength tests to show how this process minimally affects the strength of mirrors. These developments are beneficial to the high-throughput correction of thin-shell mirrors for future space-based x-ray telescopes.

Funder

National Aeronautics and Space Administration

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3