Nondestructive measurement of terahertz optical thin films by machine learning based on physical consistency

Author:

Ming Ziwei,Liu Defeng1,Xiao Long2,Yang Le,Cheng Yuehuan,Yang Haoming,Zhou Jiahao,Ding Hao,Yang Zhengang,Wang KejiaORCID

Affiliation:

1. AVIC Beijing Changcheng Aeronautical Measurement and Control Technology Research Institute

2. Science and Technology on Electromagnetic Compatibility Laboratory China Ship Development and Design Center

Abstract

Optical scattering measurement is one of the most commonly used methods for non-contact online measurement of film properties in industrial film manufacturing. Terahertz photons have low energy and are non-ionizing when measuring objects, so combining these two methods can enable online nondestructive testing of thin films. In the visible light band, some materials are transparent, and their thickness and material properties cannot be measured. Therefore, a method based on physical consistency modeling and machine learning is proposed in this paper, which realizes the method of obtaining high-precision thin film parameters through single-frequency terahertz wave measurement, and shows good performance. Through the experimental measurement of organic material thin films, it is proved that the proposed method is an effective terahertz online detection technology with high precision and high throughput.

Funder

National Natural Science Foundation of China

National Defense Pre-Research Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3