Affiliation:
1. Nanjing University of Posts and Telecommunications
Abstract
Ultraviolet photodetectors have aroused wide concern based on wide-band-gap semiconductors, such as GaN and Ga2O3. Exploiting multi-spectral detection provides unparalleled driving force and direction for high-precision ultraviolet detection. Here we demonstrate an optimized design strategy of Ga2O3/GaN heterostructure bi-color ultraviolet photodetector, which presents extremely high responsivity and UV-to-visible rejection ratio. The electric field distribution of optical absorption region was profitably modified by optimizing heterostructure doping concentration and thickness ratio, thus further facilitating the separation and transport of photogenerated carriers. Meanwhile, the modulation of Ga2O3/GaN heterostructure band offset leads to the fluent transport of electrons and the blocking of holes, thereby enhancing the photoconductive gain of the device. Eventually, the Ga2O3/GaN heterostructure photodetector successfully realizes dual-band ultraviolet detection and achieves high responsivity of 892/950 A/W at the wavelength of 254/365 nm, respectively. Moreover, UV-to-visible rejection ratio of the optimized device also keeps at a high level (∼103) while exhibiting dual-band characteristic. The proposed optimization scheme is anticipated to provide significant guidance for the reasonable device fabrication and design on multi-spectral detection.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Key R&D Project of Jiangsu
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献